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Source-Type Integral Equation Analysis of

Circularly Curved Channel Waveguides

in a Multilayered Background
Harrie J. M. Bastiaansen, H. Ed Cray6, and Hans Blok, Member, IEEE

Abstract+fhe source-type integral equation method has proven

to be a powerful modeling tool for straight ridge waveguides.

This method is full-vectorial and mathematically rigorous. In a

previous publication the source-type integral equatiou method
has also been successfully applied to circularly curved channel

wavegnides in a homogeneous background. In the present paper
this approach is extended to circularly curved channel waveg-
uides embedded in a multilayered background. These are the
type of waveguide structures that are usually encountered in
integrated-optical and optoelectronic devices.

I. INTRODUCTION

o PTICAL WAVEGUIDES interconnect the various com-

ponents present on an optoelectronic circuit. These cir-

cuits generally consist of a multilayered stack of dielectric

materials, in which straight and curved channel waveguide

tracks are made. The source-type integral equation method

has already proven to be a powerful modeling tool for the

determination of the guided modes of straight channel waveg-

uides embedded in a multilayered background [ 1]–[3], and

of curved channel waveguides embedded in a homogeneous

background [4]. The method shows some resemblance with

the Volume Current Method [5]–[8] but does not assume the

electromagnetic field in the core of the waveguide to be known

ii priori.

In this paper, we complete the source-type integral equa-

tion analysis by focussing on the rigorous computation of

the guided modes of circularly curved channel waveguides

embedded in a multilayered background. The Green’s tensor

for the multilayered background is determined by a scattering-

matrix formalism. Various numerical results are presented. In

[4], [9], we have shown that considerable inaccuracies may

occur when approximate methods like the Effective Index

Method [10], [11] are applied to these waveguides. The full-

vectorial, source-type integral equation method as presented

in this paper does not show such inaccuracies.

The analysis presented in this paper completes the modal

analysis for both straight and circularly curved planar and

channel waveguides by means of a source-type integral
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Fig. 1. The circularly curved channel waveguide embedded in a multilayered
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Fig. 2. Cross-section at fixed azimuthal p-coordinate of the cnrved channel
waveguide configuration.

equation. For a complete overview, see [12]. We have

demonstrated that the source-type integral equation method

can be a very powerful designing tool for optical waveguides.

II. FORMULATION OF THE PROBLEM

The waveguiding structure we will investigate is the

circularly curved channel waveguide embedded in a multil-

ayered background (Figs. 1 and 2). A stack of N planar

dielectric layers Dl, D2,.. ~, DN is sandwiched between the

semi-infinite substrate Do and the semi-infinite superstrata

or cover DN+l. The thickness of layer Dn is h“, its

0018–9480/95$04.00 @ 1995 IEEE
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permittivity en is real-valued (no losses assumed). Within

layer D’ a circularly curved channel waveguide core

DW, PL < p < PH, xL(P) < x < XH(P), with inhomogeneous
permittivity profile Ew (z, p) is embedded. The right-handed

cylindrical reference frame {O, ~Z, ~P,~W} is introduced, such

that the plane x = O is centered in D’, i.e. it is equidistant

to the planes z = Zs–l and z = z’. The channel waveguide

core Dw is circularly curved around the axis p = O. No 27r

azimuthal periodicity of the electromagnetic fields is assumed.

In the waveguiding structure guided modes can propagate.

These are time-harmonic solutions of the source-free Maxwell

equations for which the electromagnetic field propagates har-

monically and undeformed in the azimuthal p-direction

In [4], a full-vectorial source-type integral equation has been

derived to determine the guided modes for the case of a

homogeneous background with permittivity &6

‘H:dkl ‘&w(z’p’)-’b]
Du

‘“k k k ) .~(x’, p’; kv)p’ d$’ dp’ (2)G(X,P;X’, P , z, p) 9.

with the Green’s tensor ~ equal to

G= :gJk, (kpp<)H:)(kpP>)>
. 2ti&b =

P< = min{p, P’}, P> = max{p, p’},

k;pp’

‘[*P:!:II’XP[’’X’’’-]’]
(3)

and S. = sign(xt – x), kb = w-, and ?-cP =

_ Im{kP} < 0 For observation points (x, P)
inside the channel waveguide core D ~, (2) constitutes a

homogeneous Fredholm integral equation of the second kind.

Non-trivial solutions exist for the values of the azimuthal wave

number kq that are propagation constant of a guided mode.

As radiation loss is inherent to the guided modes in curved

waveguides, the propagation constants are complex valued.

For modes propagating in the positive azimuthal direction,

they are situated within the fourth quarter of the complex

k~-plane. The value lc~ is represented through the effective

refractive index N,ff (describing the phase velocity) and the

radiation loss L~~d

NeH = Re{kP}/(hop~),

L,ad = –10 . m . Im{kW}/ ln(lO) [dB/(90 degrees)].

Equation (2) is reformulated by means of relation (19) of

the Appendix as

[%(x’p)001o 10 “ E(% P; hf)

o 01

‘-%z%dll“w(x’p’)-’b]
Dw

“k k k ) .~(X’, f+; kP)p’ dx’ dp’.qx, p;x’, p’, z, p, p

(4)

with k.= ~- Im{k.} z Q and the Green’s tensor
~ equal to

G= &~Jk, (kpP)Jkp(kPp’).

The nonunity term on the diagonal of the matrix at the left-

hand side has shifted from the pp-element of (2) to the

xx-element of (4). This is due to the integral path deformation

of the xx- and the pp-element of the Green’s tensor for which
~ = —1 (see Appendix).

The loss-free wave number kb is considered as the limiting

case of a lossy situation: kb = k~ – jO, R,e{kb } > 0. Then,

the definition of the complex root-function kz (kP) shows that

kz (kO) is situated in the second quadrant of the complex plane.

Therefore, the integral (4) directly shows that the boundary

condition of exponentially decaying fields for 1$I ~ cc are

satisfied. Hence, (4) will be used as the integral equation for

the guided modes of the circularly curved channel waveguide

in a multilayered background, for which the Green’s tensor ~.
will be derived in the next section.

111, THE GREEN’S TENSOR FOR THE

MULTI-LAYERED BACKGROUND

The p-column, p = z, p, p, of the Green’s tensor is the

electric field, generated by an electric point-source situated

within Ds and radiating in the direction of the unit vector ~P.

An azimuthal cross-section of the configuration for the point-

source problem is shown in Fig. 3. The point-source divides

layer D’ in D’– and D’+. The solution of the point-source

problem is the superposition of two parts.

The primary part (superscript “p-i”) takes the inhomo-

geneity in Maxwell’s equations due to the presence of the

point-source into account. It is only non-vanishing within layer
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Fig. 3. Configuration forthepoint-source problem.

D’ where it equals the p-column of the Green’s tensor (3) for

the homogeneous background.

The secondary part (superscript “see”) satisfies thehomo-

geneous Maxwell equations. It is defined within every layer

of the background.

The construction of the solution of the point-source problem

for the multilayered background is based on four relations:

General Solution: In Dn, the the general solution of the

homogeneous Maxwell equations is [13, p. 91]:

with

&(kp, k:) = >

– k: 1

Boundary Conditions: In Do and DN+l the field must

decay: f +,N+l = f-o = ~
—P —P

Continuity Conditions: The continuous tangential field

components in (5) are equated at the interfaces z =: ~m,

giving

[g:::] =zn+=n.~$,].

The ij-element of ~“+1=” vanishes if z + j is odd.

Excitation Conditions: The unknown secondary vectors

f *Is>sec are equal in D’+ and D’ –. The known primary
—P
vectors ~~’’’pri differ. Elimination of j+ ’’’see yields

~~”+ = j’+’-” + f+,~;,pri
—P —P

The solution of the point-source problem is uniquely deter-

mined by the boundary, continuity and excitation conditions.

We will apply the scattering-matrix formalism to construct

the solution. For this formalism, we refer to [14], in which

it proved its effectiveness in the analysis of straight channel

waveguides in a multilayered background. The formalism

gives a recursive scheme for the determination of the reflection

coefficients defined as

~p~~m= r$n.~+:n if n.c{s+, . . . . IV + 1},p,% ~

.f
+,n = ~u>rl

p,% , ..fP~;n, if rt6{0,... ,s-}, i = E, H. (7)

The scattering-matrix formalism is a scalar recursive scheme

independent of the p-value, p = x, p, p, in which all texpo-

nentially increasing factors have been eliminated. Hence, it is

both numerically stable and eficient.

It suffices to consider point-sources (x’, p’) and observation

points (z, p) situated within D’ to determine the propagation

constants kw of the guided modes. The reflection coefficients
~d,s+

and r~’S– are expressed in the reflection coefficients
~1* ;’ of a point-source situated at the center x’ = O

o; ~dt~rough r$’+(~’) = exp[-2jk~x’]r~*, r~’s- (x’) =

exp[2jk~z’]r$*. With the reflection coefficients, (5) yields

the electric field generated by the point-source and hence the

p-column of the Green’s tensor. For (x, p).dY, the Green’s

tensor ~ multilayered background for the source-type integral

(4) bec~mes

g=.

(8)
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a = exp[jk~(r – x’)](+ exp[–2jk~%] + ry)

(+exp[2jk:x’] + r#)/(1 – r’#r’#),
b = exp[jk~($ – Z’)](+ exp[–2.jk~~] + r~)

. (–exp[2jk~fc’] + @)/(1 – r~r~),

c = exp[jk~(fz – z’)](– exp[–2jk~z] + ry)

. (+exp[2jk:3Y] + r’#)/(1 – r’j$r~),
d = exp[jk~(x – %’)](– exp[–2jk~z] + r~)

. (–exp[2jk~x’] + r~)/(1 – r~r~),

e = exp[jk~(r – $’)](– exp[–2jk~z] + rg)

. (–exp[2jk~2?] + r~)l(l – r~r~),

Z>d,

X< x’.

Relation (19) in the Appendix shows that the Green’s tensor

can as well be expressed in terms of the Hankel function as

(9). Hf@>)Jk. (@<).v

From a numerical point of view, the inverse transformation of

the radial wave number k. over the real axis is not very attrac-

tive as the Bessel and IIankel functions are strongly oscillating

and have to be computed with the complicated and CPU-time

consuming Nicholson’s expansion [15, 9.3 .35–9.3 .46]. There-

fore, deformation of the integral path is applied. This requires

that the branch-points and pole singularities of the Green’s

tenscrs for the multilayered background in the complex kP-

plane are identified (Fig. 4).

Branch-Points. The root function kg =
m ‘as

branch-points kP = +k” and branch-cuts Im{k~} = O.

For layers Dm in between the substrate and the cover the

components of the Green’s tensor ~ are even functions of

k: and the branch-points vanish.

Pole Singularities. These are the discrete points for which

the term 1 – r$’ r:’ vanishes. For these ko-values, the back-

ground supports non-trivial solutions of the homogeneous

Maxwell-equations, i.e. the pole singularities are the guided

modes of the planar multilayered background. The pole sin-

gularities are situated on the real kP-axis.

The integration path is deformed from the real kP-axis into

the branch-cut B –, complemented with the contours Bs, each

enclosing a pole singularity. The non-unity term in the left-

hand side of(4) reshifts from the xx-element to the pp-element

(see Appendix for a = – 1). For kP on B-, the Bessel and

Hankel functions do not oscillate but behave as exponentially

decaying functions. Over almost the complete range, they can

easily be evaluated with Debye’s expansion [15, 9.3.7–9.3. 14].

IV. NUMERICAL IMPLEMENTATION

To convert the continuous source-type integral equation into

its discrete counterpart suitable for numerical solution, the

method of moments is applied [16], The electric field ~(x, p)

is expanded into a summation of expansion functions $1(x, p)

L

lz(~, P) = ~ ft(~, P) El, (x, p)eDW. (lo)

1=1

Subsequently, the weighting procedure with weighting func-

tions wn (z, p) is applied over the cross-section of the wave-

guide. A set of 3 x L linear algebraic equations for the 3 x L

components of the expansion vectors ~1 results

TW{l, . . ..L} (11)

in which

. [%(X’,(+) – &b]~(x, p;~’, p’; ~p, &)

. fJ(X’, p’)p’ dr’ alp’.

Relation (11 ) is the discrete form of the source-type integral

equation. It constitutes a system of 3 x L homogeneous linear

equations that can be represented as

in which the overall expansion vector ~ contains the individ-

ual expansion vectors El. A non-trivial solution exists only if

the determinant of the system is equal to zero

det[~(kq)] = O. (13)

The propagation constants kP of the guided modes fulfill (13).

Condition (13) is the resonance condition for the source-type
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Fig. 5. COST 216 waveguide configurations: (a) strongly guiding waveguide configuration, (b) weakly guiding waveguide configuration.

integral method. If a propagation constant and its overall

expansion vector X have been determined, (10) gives the

electric field distribution inside DW and, subsequently, the

integral representation (4) gives the electric field distribution

outside DW as well. The magnetic field follows by applying

the curl-operation to the electric field. The complex zeros of

the resonance condition (13) within a contour in the complex

kp-plane are evaluated with the method presented by Delves

and Lyness [17].

In view of the applications in optoelectronic devices, we

restrict ourselves to homogeneous rectangular channel wave-

guide cores DW

DW : –; <x<;, PL<P<PH, Ew(fC, p) = SW

An efficient algorithm to evaluate the kP-integrations over B–

(11) has been outlined in [4]. This algorithm is shortly reca-

pitulated here. Separable expansion and weighting functions

are chosen

$1(%P)= f;(P) .f:($)>

lq(z, p) = Wow;, 1
pe{l,.. ., P},

qc{l,.. ., Q},

PxQ=L. (14)

The integrand for the kP-integrations over 1?- is separated

in a k~-dependent part (i.e. the p, p’-dependence), and a

kw-independent part (i.e. the z, $’-dependence). Next, the

integration path B– is divided into Jr and Ji intervals on

the real and imaginary axis, respectively. On each interval,

the ky-dependent part of the integrand is approximated by a

summation of K Chebyshev polynomials with k~-dependent

weight-factors. For each Chebyshev polynomial and interval,

the kP-integration over the remaining kP-independent inte-

grand is evaluated, and the result is stored. All kP-integrations

over B – for subsequent kw-values reduce into a mere deter-

mination of the k+ -dependent weight-factors of the Chebyshev

polynomials for the kq-dependent part of the integrand, fol-

lowed by a summation of the already stored results for

the remaining kw-independent integrations. This numerical

algorithm operates very efficiently. However, it poses some

restrictions on the choice of the expansion and weighting

functions. Hence, as in [4] we take adapted cubic B-splines and

Dirac functions as expansion and weighting functions in the

p-direction. In the z-direction equidistant triangle and pulse

functions are chosen as expansion functions and weighting

TABLE I
TrrE EFFECTIVE REFRACTWE INDEX Neff AND THE RADIATION Loss

L,ad OF THE TEOO-MODE AND THE TMOO-MODE FOR THE

STRONGLY GUWINGCOST-W.4vEGumE VERSUS THE RADIOS pH

20 pm

40 pm

60 pm

80 pm

100. pm

500 pm

~000 pm

?500 pm

iOOOpm

W
—

moo

STIM

Neff

1,529345

1.540401

1.545567

1.548928

1.551314

1.562330

1.564500

1.565976

1.566500

1.567041

functions, respectively.

Lrad

15.039

3.2452

0.4237

0.0376

0.0027

0.0000

0.0000

0.0000

0.0000

D.0000

MM

Lrad

15.528

3.7468

0.4377

0.0389

0.0028

0.0000

0.0000

0.0000

0.0000

0.0000
—

TMOO

s’rlM

NeR

1.510267

1.520892

1.525822

1.528935

1.531243

1.541923

1.544050

1.545503

1.546019

1.546551

15.201

3.668

0.850

0.093

0.005

0.000

0.000

0.000

0.000

0.000

The spatial integrations in the Z-

direction are performed analytically, those in the p-direetion

are performed numerically using Gaussian quadrature. To

obtain high accuracy of the numerical results, the various

discretization parameters are set as J. = 2, Ji = 6, K =

15,1’ =16, Q=4.

V. NUMERICAL RESULTS

The first numerical example of the source-type integral

equation method (STIM) is the strongly guiding configuration

Fig. 5(a), as studied in the COST 216 project [18] (COST:

European Cooperation in the Field of Scientific and Technical

Research). The dimensions of the ridge and background are:

W = 3.5 pm, t = 0.24 ,um and dt = 0.1 #m. The operating

free-space wavelength is A. = 0.6328 ~m. In Table I, both

the effective refractive index and the radiation loss for the

strongly guiding waveguide configuration are presented as a
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guiding COST-waveguide versus the radius pff.

TABLE II

THE EFFECTIVE REFRACTIVE INDEX Neff AND THE RADIATION

LOSS L,ad OF THE TEOO-MODE FOR THE WEAKLY

GUIDING COST-WAVEGUIDE VERSUS THE RADIOS pH

weakly guiding: ‘1’1100

m

PI] STIM EIM

24000 pm 4.2414 0.0850

20000 pm 9.1567 0.3955

16000 Km 18.473 1.7278

function of the radius pH. To test the consistency of the STIM

for curved channel waveguides with that of straight channel

waveguides [14], the results for the straight channel waveguide

have been included (pH = co) as well. The data of Table I for

the effective refractive index of the TEoo-mode are graphically

presented in Fig. 6. For pff ~ eo, the effective refractive in-

dex of the curved channel waveguide configuration converges

to that of the straight channel waveguide configuration. A

similar behavior can be observed for the TMoo-mode.

For the TEoo-mode the radiation loss as computed with the

well-known approximate Effective Index Method (EIM) has

been included in Table I as well. If one compares the results

of the STIM and the EIM, the differences seem to be marginal,

and the effort in deriving the STIM does not seem justified.

This changes however if one considers the weakly guiding

waveguide COST-configuration of Fig. 5(b), with dimensions

W = 2.0 #m, t = 1.3 ~m and dt = 0.3 ~m. The operating

free-space wavelength is ~0 = 1.286 ~m. In Table II, the

radiation loss of the TEoo-mode is given as function of the

radius pH. The radiaton loss as found with the STIM differs

considerably from that found with the EIM. A factor more

than 10 in Decibel radiation loss is observed for radii above

16000 pm. Even larger differences between the results of

the EIM and the STIM were observed for other waveguide

configurations [9].

Subsequently, we compare the results of the STIM with

the results of the semi-vectorial Method of Lines (MoL), as

presented by Gu in his thesis [19]. Experimental results for

the configuration are available as well. The configuration is

r’
“ ~ad 40

[(ii]/90”] I
30 +

20k
-——

10 ‘
.

0

0

2.9pm

n = 1.0
t

j 0.33pm

71= 3.3735 I 1.45prn
4

n = 3.3042

\

STIM
MoL
EIM
Experiment

10X3 2ml 30W 4K0 m

P2 [w] +
Fig. 7. The radiation loss L,ad of the TEOO -mode of the Deri-wavegnide

versus the radinS pH.

TABLE III

THE EFFECTIVE REFRACTIVE INDEX Neff AND THE RADLATION

Loss L,.d OF THE TEOO -MODE ANO THE TMOO -MODE

FOR THE DEM-WAVEGUIDE VERSUS THE RADIUS pH

p!i

1000 pm

2000 pm

3000 pm

4000 pm

5000 pm

Nefl

3.341897

3.343488

3.344056

3.344369

3.344571

Lrad

43.2323

12.4522

2.9519

0.5915

0.1065

TMOO

Ivefy

3.339708

3.341286

3.341890

3.342224

3.342436

Lrad

28.8042

4.8828

0.6013

0.0630

0.0075

the GaAs/AIGaAs optical rib waveguide of Deri et al. [20].

The description of the configuration is enclosed as inset in

Fig. 7. The waveguide is operated at the free-space wavelength

A. = 1.52 pm. The effective refractive index and the radiation

loss for the TEoo-mode and the TMoo-mode are given in

Table III. For the TEoo-mode, the radiation loss is graphically

presented in Fig. 7. The results of the EIM, the MoL and the

experimental results have been included as well.

The source-type integral equation presented in this paper

is full-vectorial. Field-plots of the components E., EP and

EP can be obtained. These field-components are complex-

valued. Fig. 8 shows their norm for the TEoo-mode for the

Deri waveguide configuration for the outer radius p* = 3000.O

pm, together with the field-intensity 1~1. The outward shift of

the field-distribution due to the waveguide curvature is clearly

visible.

W. CONCLUSION

The full-vectorial and mathematically rigorous source-type

integral equation analysis has been extended to circularly

curved channel waveguides with arbitrary cross-section em-

bedded in a multilayered background. Numerical results for

a broad range of curved channel waveguide configurations



BASTIAANSEN etal.: CIRCULARLY CURVED CHANNEL WAVEGUIDES IN A MULTILAYERED BACKGROUND 1603

integral path deformation from kZ CR into the contour around

the branch-cut 13+ is allowed. Change of integration variable

from kc to kP yields

fielcl.intensity 1~1

[Epl-component

[E. ]-component

I I

lEvl-component

Fig. 8. Field-distribution of the TEOO -mode
PH = 3000.0 pm.
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Fig. 9. Deformation of the path of integration in the kz -plane.

have been presented. The results of the source-type integral

method have been compared with experimental results and

numerical results of other methods (especially the Effective

Index Method). Considerable disagreements were observed

for some configurations. For a more complete

the source-type integral equation method and a

numerical results, the reader is referred to [12].

APPENDIX

overview of

multitude of

For VCC, Re{v} 2 0, and kP = ~=, Im{kP} 50.

the integral 1 is defined as

I :=
/

m f(kz, kp)Jv(kflp<)H$2) (~pP>)

- :X;[jk=lz’ – 21] dk.. (15)

Let j(k~, kP) be an analytic function of kx and an even
analytic function of kP. Then ~(kz, kP(kr )) has the branch-

cut B+, Im{kP} = O, see Fig. 9. Furthermore, let ~(kc, kP) =

O(li$), lkxl - co, for cs< –1. Then, the large argument

expansion of the Bessel and Hankel function shows that

. exp[jkmlz’ – zI] dkP.

As H:) = ZJV _ H$l) we find I = 211 – 12 with

11=–
/

m ~f(k., kp)JV(ICpLI)JU(L@)
—cc z

. exp[jkzlz’ – xl] dkP,

12=–
J

m ~f(kz, kp)J.(kpP<)@(~pP>)

. ex~~”k~z’ – zI] dkP.

(16)

(17)

(18)

With change of integration variable kP -i –kP in (18)
vnjH$2J(z), Jv(—.z) = eand ll~l)(-.z) = –e– ‘m~Jv (z) and

$(k~, –k,) = .f(k~, k,) we find

1=11=12. (19)

Similar relations hold for the derivatives of the Bessel and

Hankel functions.

Note: If a = – 1, the non-uniform convergence of (15) for

p = p’ gives rise to additional terms when deformation of the

path of integration is applied.
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