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Source-Type Integral Equation Analysis of
Circularly Curved Channel Waveguides
in a Multilayered Background

Harrie J. M. Bastiaansen, H. Ed Crayé, and Hans Blok, Member, IEEE

Abstract—The source-type integral equation method has proven
to be a powerful modeling tool for straight ridge waveguides.
This method is full-vectorial and mathematically rigorous. In a
previous publication the source-type integral equation method
has also been successfully applied to circularly curved channel
waveguides in a homogeneous background. In the present paper
this approach is extended to circularly curved channel waveg-
uides embedded in a multilayered background. These are the
type of waveguide structures that are usually encountered in
integrated-optical and optoelectronic devices.

I. INTRODUCTION

PTICAL WAVEGUIDES interconnect the various com-
O ponents present on an optoelectronic circuit. These cir-
cuits generally consist of a multilayered stack of dielectric
materials, in which straight and curved channel waveguide
tracks are made. The source-type integral equation method
has already proven to be a powerful modeling tool for the
determination of the guided modes of straight channel waveg-
uides embedded in a multilayered background [1]-[3], and
of curved channel waveguides embedded in a homogeneous
background [4]. The method shows some resemblance with
the Volume Current Method [5]-[8] but does not assume the
electromagnetic field in the core of the waveguide to be known
a priori.

In this paper, we complete the source-type integral equa-
tion analysis by focussing on the rigorous computation of
the guided modes of circularly curved channel waveguides
embedded in a multilayered background. The Green’s tensor
for the multilayered background is determined by a scattering-
matrix formalism. Various numerical results are presented. In
[4], I9], we have shown that considerable inaccuracies may
occur when approximate methods like the Effective Index
Method [10], [11] are applied to these waveguides. The full-
vectorial, source-type integral equation method as presented
in this paper does not show such inaccuracies.

The analysis presented in this paper completes the modal
analysis for both straight and circularly curved planar and
channel waveguides by means of a source-type integral
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Fig. 1. The circularly curved channel waveguide embedded in a multilayered
background.
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Fig. 2. Cross-section at fixed azimuthal ¢-coordinate of the curved channel
waveguide configuration.

equation. For a complete overview, see [12]. We have
demonstrated that the source-type integral equation method
can be a very powerful designing tool for optical waveguides.

II. FORMULATION OF THE PROBLEM

The waveguiding structure we will investigate is the
circularly curved channel waveguide embedded in a multi-
layered background (Figs. 1 and 2). A stack of N planar
dielectric layers D', D? ... DV is sandwiched between the
semi-infinite substrate D° and the semi-infinite superstrate
or cover DN*! The thickness of layer D™ is A", its
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permittivity €™ is real-valued (no losses assumed). Within
layer D® a circularly curved channel waveguide core
Dy, pr<p<pm,zr(p)<z<zp(p), with inhomogeneous
permittivity profile e, (z, p) is embedded. The right-handed
cylindrical reference frame {O, 14,4 wiso} is introduced, such
that the plane x = 0 is centered in D?®, i.e. it is equidistant
to the planes x = 2°~! and z = «°. The channel waveguide
core D,, is circularly curved around the axis p = 0. No 2«
azimuthal periodicity of the electromagnetic fields is assumed.
In the waveguiding structure guided modes can propagate.
These are time-harmonic solutions of the source-free Maxwell
equations for which the electromagnetic field propagates har-
monically and undeformed in the azimuthal (-direction

{&,H} (@, p,05t) = {E, H}(w, p; k) expli(wt — kypp)]. (1)

In [4], a full-vectorial source-type integral equation has been
derived to determine the guided modes for the case of a
homogeneous background with permittivity €,

1 0 0

Ew
—5(1’,0) 0. E(z,p; k)

0 0 1
2w -
D,
G, 052", 0" ks oy ) - B2, p's k) p dx’ dp” (2)
with the Green's tensor G equal to

T 2
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3
and S, = sign(e’ — z),ky = w\/Epg, and k, =

vk —k2, Im{k,} < 0. For observation points (z,p)
inside the channel waveguide core D, (2) constitutes a

homogeneous Fredholm integral equation of the second kind.
Non-trivial solutions exist for the values of the azimuthal wave
number %, that are propagation constant of a guided mode.
As radiation loss is inherent to the guided modes in curved
waveguides, the propagation constants are complex valued.
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For modes propagating in the positive azimuthal direction,
they are situated within the fourth quarter of the complex
k,-plane. The value k, is represented through the effective
refractive index N.g (describing the phase velocity) and the
radiation 1088 L;.qa

Neg = Re{ksﬂ}/(kUPH)?

Liaa =—10-7 - Im{k,}/In(10) [dB/(90 degrees)].

Equation (2) is reformulated by means of relation (19) of
the Appendix as

=(z,p) 0 0
o0 1 o E(zpik)
0 0 1
jw [*k
=-5- . édkp// [ew(z, p") — €8]
Dy
Gz, p;5", 0 s ko By k) - B p's k) p! da’ dpf
4
with &, = (/kZ — k2, Im{k;} > 0, and the Green's tensor
G equal to
G = ——GJx, (kpp) i, (kpp)
27 Qwey = ke PPk A ):

The nonunity term on the diagonal of the matrix at the left-
hand side has shifted from the pp-element of (2) to the
zz-element of (4). This is due to the integral path deformation
of the zx- and the pp-element of the Green’s tensor for which
a = —1 (see Appendix).

The loss-free wave number & is considered as the limiting
case of a lossy situation: k, = ky — 50, Re{ky} > 0. Then,
the definition of the complex root-function k,(k,) shows that
k(k,) is situated in the second quadrant of the complex plane.
Therefore, the integral (4) directly shows that the boundary
condition of exponentially decaying fields for |z| — oo are
satisfied. Hence, (4) will be used as the integral equation for
the guided modes of the circularly curved channel waveguide
in a multilayered background, for which the Green’s tensor G
will be derived in the next section. o

HI. THE GREEN’S TENSOR FOR THE
MULTI-LAYERED BACKGROUND

The p-column, p = z,p, ¢, of the Green’s tensor is the
electric field, generated by an electric point-source situated
within D? and radiating in the direction of the unit vector Ly
An azimuthal cross-section of the configuration for the point-
source problem is shown in Fig. 3. The point-source divides
layer D® in D*~ and D**. The solution of the point-source
problem is the superposition of two parts.

The primary part (superscript “pri”) takes the inhomo-
geneity in Maxwell’s equations due to the presence of the
point-source into account. It is only non-vanishing within layer



BASTIAANSEN et al.: CIRCULARLY CURVED CHANNEL WAVEGUIDES IN A MULTILAYERED BACKGROUND

—.a DN Cover

T II:,N
r = X
“
= a° "
x =g 7lzs_+___s<1ugc_e-1€_vel_>’<____ fj__
D= r hs~
z = z°571
»
"
T = .’l}l
e Y |

DO, Substrate

Fig. 3. Configuration for the point-source problem.

D# where it equals the p-column of the Green’s tensor (3) for
the homogeneous background.

The secondary part (superscript “sec”) satisfies the homo-
geneous Maxwell equations. It is defined within every layer
of the background.

The construction of the solution of the point-source problem
for the multilayered background is based on four relations:

General Solution: In D™, the the general solution of the
homogeneous Maxwell equations is [13, p. 91]:

E = E(kp kD) v, (kpp)e?s 720 o
(kK k) F
H =Hkp, k) Jr, (kpp)e?™ ) pon

™ ref _

ng n.ref _
+ Hlkp, ~k) i, (kpp)e™? =720 fn 0 (5)
with
kv =y /(k)2 = k2,Tm{k7} > 0,
i;t,n — (fpiE f;tgb),xn,ref — :L,n—l
if ne{s+, -, N + 1}, 2™ = 2" if ne{0,---,5—}, and
o1 0
Wik k™
E(ky, k) = k2 3p A2¢ : )
—k, ok quokz 5
L K2p k2 ’
r0 —k7
weky (kD)
ﬂ(kp,kf = kf;p kf’) 8"
e, k()
L k2 ? k2p
Boundary Conditions: ITn D° and DN*! the field must
decay f+ ,N+1 ip—,ﬂ _
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Continuity Conditions: The continuous tangential field

components in (5) are equated at the interfaces z = z",
giving
+,n+1 +,n
ip Pn«l—le—»n ip
f—,n‘f‘l f Y
— P

The ij-element of g""’l‘_’" vanishes if ¢ + j is odd.
Excitation Conditions: The unknown secondary vectors
fisSec are equal in Dt and D*. The known primary

vectors f +5Pr giffer. Elimination of f +s.5e¢ yields

f+,.~'+ :f—i-,S—- + f+,s+,pri

—,8— __ g—,5+ —,5—,pri
R R A ©

The solution of the point-source problem is uniquely deter-
mined by the boundary, continuity and excitation conditions.
We will apply the scattering-matrix formalism to construct
the solution. For this formalism, we refer to [14], in which
it proved its effectiveness in the analysis of straight channel
waveguides in a multilayered background. The formalism
gives a recursive scheme for the determination of the reflection
coefficients defined as

—-n dn .

pi fpz ) lfn6{8+7"'7N+1}7

+.n _ umn -, ar, .

b =1, Sy i ne{0,- 51, i=EH (D

The scattering-matrix formalism is a scalar recursive scheme
independent of the p-value, p = z, p, ¢, in which all expo-
nentially increasing factors have been eliminated. Hence, it is
both numerically stable and efficient.

It suffices to consider point-sources (z’, p’) and observation
points (z, p) situated within D*® to determine the propagation
constants k,, of the guided modes. The reflection coefficients
r&*F and 7 are expressed in the reflection coefficients
r®* and r** of a point-source situated at the center z' = 0
of D* through rb (1) = exp[—2jksa|r®*, T () =
exp[27kSx’[r¥*. With the reflection coefficients, (5) yields
the electric ﬁeld generated by the point-source and hence the
p-column of the Green’s tensor. For («, p)eD® the Green’s
tensor G multilayered background for the source-type integral
(4) becomes

k,

g:—ﬁm‘)gsg(x p7$ p kzakmk ) (kﬂp)‘]kw(kﬂp/)’
kikoS,
—ok}  <bjkS.D, e
) k:; 2 j ks 2]€
g = |cjkiS20, —d(k2) 0,0, —d (kz) - “°ap
= o
s (.S 2k ks
kS 0P, U
I k2p k%p
Qiar2 o,
LRk,
+ k";pp k2o ", ®)
0 J(k ) ke %3, e<k ) 0,0,

k2 p! k2
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Fig. 4. Deformation of the path of integration in the k,-plane.

a = expljk; (2’ —l’)](eXP[ZJkS 1+75) )

- (exp[-2jkga’] +rE") /(1 T%*T%*)
b = expljk; (' ~93)](6XP[27’€S o] +rg’)
(ex
+

- (expl=2jk5a’] =) /(1 —TETE),

(4 exp[2ikia’] +rE) /(1 — T,
d = exp[jki(x — 2’)](— exp[—25kix] + ")
(—expl2ikix’ ]+ 78 /(1 — rdryr),
e = exp[jk;(z — z')](— exp[-2jk] o]+ )
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~ Relation (19) in the Appendix shows that the Green’s tensor
can as well be expressed in terms of the Hankel function as

]
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¢ = oxpljks(z - x')]ﬁ—exp[) vkl 4y |
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)

ko
&= _Es‘“—g(wx p3 s 05 K, K, K )
CHE (k) Ik, (ko) ©

From a numerical point of view, the inverse transformation of
the radial wave number k, over the real axis is not very attrac-
tive as the Bessel and Hankel functions are strongly oscillating
and have to be computed with the complicated and CPU-time
consuming Nicholson’s expansion {15, 9.3.35-9.3.46]. There-
fore, deformation of the integral path is applied. This requires
that the branch-points and pole singularities of the Green’s
tenscrs for the multilayered background in the complex k-
plane are identified (Fig. 4).

Branch-Points. The root function ki = ,/(k™)? — k2 has

branch-points k, = =£k™ and branch-cuts Im{x?} = 0.
For layers D™ in between the substrate and the cover the
components of the Green’s tensor G are even functions of
k7 and the branch-points vanish.
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Pole Singularities. These are the discrete points for which
the term 1 — rd*r“* vanishes. For these k,-values, the back-
ground supports non-trivial solutions of the homogeneous
Maxwell-equations, i.e. the pole singularities are the guided
modes of the planar multilayered background. The pole sin-
gularities are situated on the real k,-axis.

The integration path is deformed from the real k,-axis into
the branch-cut B~ , complemented with the contours By, each
enclosing a pole singularity. The non-unity term in the left-
hand side of (4) reshifts from the zz-element to the pp-element
(see Appendix for « = —1). For k, on B, the Bessel and
Hankel functions do not oscillate but behave as exponentially
decaying functions. Over almost the complete range, they can
easily be evaluated with Debye’s expansion [15, 9.3.7-9.3.14].

IV. NUMERICAL IMPLEMENTATION

To convert the continuous source-type integral equation into
its discrete counterpart suitable for numerical solution, the
method of moments is applied [16]. The electric field E(z, p)
is expanded into a summation of expansion functions f;(z, p)

L
p) = Z fl(x,p)ﬁla
=1

Subsequently, the weighting procedure with weighting func-
tions wy, (x, p) is applied over the cross-section of the wave-
guide. A set of 3 x L linear algebraic equations for the 3 x L
components of the expansion vectors F; results

(z,p)eD,,. (10)

L jw L
Zém;l.—E‘l = —%Z
=1 =1
k
(/ﬁZ/B)k;’@ (kp, k) dk, - E;,
me{l, -+, L} an
in which
1 0 ) 0
ew(z, p
L= [ |0 =22 0 untepiitep) ds dp
Dy, 0 1 .

ﬁm;l(kp’kso) :// W (2, p) dx dp//

lew(a's ) — el Gla, p 2, ' by, i)
- fila’, p)p' da’ dp'.
Relation (11) is the discrete form of the source-type integral

equation. It constitutes a system of 3 x I homogeneous linear
equations that can be represented as

Alk,)- X =0 (12)

in which the overall expansion vector X contains the individ-
ual expansion vectors £;. A non-trivial solution exists only if
the determinant of the system is equal to zero

det[A(k,)] = 0.

The prbpagation constants k,, of the guided modes fulfill (13).
Condition (13) is the resonance condition for the source-type

(13)



BASTIAANSEN et al.: CIRCULARLY CURVED CHANNEL WAVEGUIDES IN A MULTILAYERED BACKGROUND

¢ _
ALO4 n = 1.690

5i0,

Si-wafer

(@)

integral method. If a propagation constant and its overall
expansion vector X have been determined, (10) gives the
electric field distribution inside D, and, subsequently, the
integral representation (4) gives the electric field distribution
outside D, as well. The magnetic field follows by applying
the curl-operation to the electric field. The complex zeros of
the resonance condition (13) within a contour in the complex
k,-plane are evaluated with the method presented by Delves
and Lyness [17].

In view of the applications in optoelectronic devices, we
restrict ourselves to homogeneous rectangular channel wave-
guide cores D,

h h
i< =
2 ==
An efficient algorithm to evaluate the k,-integrations over B~
(11) has been outlined in [4]. This algorithm is shortly reca-
pitulated here. Separable expansion and weighting functions
are chosen

D, : L < p< pr, €uw(T,p) = Ew.

M%M=ﬁ@ﬁ@%}

wi(z, p) = w{;(P)wf;(x)’

pf{la"'aP}a
qe {17"'7Q}7
PxQ=L. (14)

The integrand for the k,-integrations over B~ is separated
in a k,-dependent part (i.e. the p,p’-dependence), and a
k,-independent part (i.e. the x,x’-dependence). Next, the
integration path B~ is divided into J,. and J; intervals on
the real and imaginary axis, respectively. On each interval,
the k,-dependent part of the integrand is approximated by a
summation of K Chebyshev polynomials with k,-dependent
weight-factors. For each Chebyshev polynomial and interval,
_ the k,-integration over the remaining k-independent inte-
grand is evaluated, and the result is stored. All k,-integrations
over B~ for subsequent k,-values reduce into a mere deter-
mination of the k,-dependent weight-factors of the Chebyshev
polynomials for the k,-dependent part of the integrand, fol-
lowed by a summation of the already stored results for
the remaining k.-independent integrations. This numerical
algorithm operates very efficiently. However, it poses some
restrictions on the choice of the expansion and weighting
functions. Hence, as in [4] we take adapted cubic B-splines-and
Dirac functions as expansion and weighting functions in the
p-direction. In the z-direction equidistant triangle and pulse
functions are chosen as expansion functions and weighting

1601
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Fig. 5. COST 216 waveguide configurations: (a) strongly guiding waveguide configuration, (b) weakly guiding waveguide configuration.

TABLE I
THE EFFECTIVE REFRACTIVE INDEX N.g AND THE RADIATION Loss
Lyaq OF THE TEqgo-MoDE AND THE T'Mo-MODE FOR THE
STRONGLY GUIDING COST-WAVEGUIDE VERSUS THE RADIUS pzr

TEog TMgo

STIM EIM STIM
PH Neft Lyad | Frad N eff Lrad
20 pm | 1.529345 | 15.039 | 15.528 | 1.510267 | 15.201
40 pm | 1.540401 | 3.2452 | 3.7468 | 1.520892 | 3.668
60 pum | 1.545567 | 0.4237 | 0.4377 | 1.525822 | 0.850
80 pm | 1.548928 [ 0.0376 0.0389 | 1.528935 | 0.093
100, pm | 1.551314 | 0.0027 | 0.0028 | 1.531243 | 0.005
500 pm | 1.562330 | 0.0000 | 0.0000 | 1.541923 | 0.000
1000 pm | 1.5664500 | 0.0000 | 0.0000 { 1.544050 { 0.000
2500 pm | 1.565976 | 0.0000 { 0.0000 | 1.545503 | 0.000
5000 pm | 1.566500 | 0.0000 | 0.0000 | 1.546019 | 0.000
o0 1.567041 | 0.0000 (-0.0000 | 1.546551 | 0.000

functions, respectively. The spatial integrations in the z-
direction are performed analytically, those in the p-direction
are performed numerically using Gaussian quadrature. To
obtain high accuracy of the numerical results, the various
discretization parameters are set as J, = 2, J; = 6, K =
15, P = 16, Q = 4.

V. NUMERICAL RESULTS

The first numerical example of the source-type integral
equation method (STIM) is the strongly guiding configuration
Fig. 5(a), as studied in the COST 216 project [18] (COST:
European Cooperation in the Field of Scientific and Technical
Research). The dimensions of the ridge and background are:
W = 3.5 um, t = 0.24 pm and d¢t = 0.1 pm. The operating
free-space wavelength is A\¢ = 0.6328 pm. In Table I, both
the effective refractive index and the radiation loss for the
strongly guiding waveguide configuration are presented as a
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Fig. 6. The effective refractive index Neg of the TEqg-mode of the strongly
guiding COST-waveguide versus the radius prr.

TABLE II
THE EFFECTIVE REFRACTIVE INDEX N.g AND THE RADIATION
Loss L;aq OF THE TEgo-MODE FOR THE WEAKLY
Gumning COST-WAVEGUIDE VERSUS THE RaDIUS ppr

weakly guiding: TEgo

o STIM | EIM

24000 pm | 4.2414 | 0.0850

20000 sm | 9.1567 | 0.3955

16000 pm | 18.473 | 1.7278

function of the radius pg. To test the consistency of the STIM
for curved channel waveguides with that of straight channel
waveguides [14], the results for the straight channel waveguide
have been included (pg = oo) as well. The data of Table I for
the effective refractive index of the TEyg-mode are graphically
presented in Fig. 6. For pg — o0, the effective refractive in-
dex of the curved channel waveguide configuration converges
to that of the straight channel waveguide configuration. A
similar behavior can be observed for the TMgg-mode.

For the TEgg-mode the radiation loss as computed with the
well-known approximate Effective Index Method (EIM) has
been included in Table I as well. If one compares the results
of the STIM and the EIM, the differences seem to be marginal,
and the effort in deriving the STIM does not seem justified.
This changes however if one considers the weakly guiding
waveguide COST-configuration of Fig. 5(b), with dimensions
W =20 pm, ¢t = 1.3 ym and dt = 0.3 pm. The operating
free-space wavelength is A\g = 1.286 um. In Table II, the
radiation loss of the TEgy-mode is given as function of the
radius pg. The radiaton loss as found with the STIM differs
considerably from that found with the EIM. A factor more
than 10 in Decibel radiation loss is observed for radii above
16000 pm. Even larger differences between the results of
the EIM and the STIM were observed for other waveguide
configurations [9].

Subsequently, we compare the results of the STIM with
the results of the semi-vectorial Method of Lines (MoL), as
presented by Gu in his thesis [19]. Experimental results for
the configuration are available as well. The configuration is
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Fig. 7. The radiation loss L;,q of the TEqo-mode of the Deri-waveguide
versus the radius pgr.

TABLE III
THE EFFECTIVE REFRACTIVE INDEX N AND THE RADIATION
Loss Lyaq OF THE TEgo-MoDE AND THE TMgo-MODE
FOR THE DERI-WAVEGUIDE VERSUS THE RADIUS pfr

TEg TMoo
PH Neft | Lrad | Nef | Lrad
1000 pm | 3.341897 | 43.2323 | 3.339708 | 28.8042
2000 pm | 3.343488 | 12.4522 | 3.341286 | 4.8828
3000 pm | 3.344056 | 2.9519 | 3.341800 | 0.6013
4000 pm | 3.344369 | 0.5915 | 3.342224 | 0.0630
5000 pm | 3.344571 | 0.1065 | 3.342436 | 0.0075

the GaAs/AlGaAs optical rib waveguide of Deri er al. [20].
The description of the configuration is enclosed as inset in
Fig. 7. The waveguide is operated at the free-space wavelength
Ao = 1.52 pm. The effective refractive index and the radiation
loss for the TEgg-mode and the TMgyg-mode are given in
Table III. For the TEq-mode, the radiation loss is graphically
presented in Fig. 7. The results of the EIM, the MoL and the
experimental results have been included as well.

The source-type integral equation presented in this paper
is full-vectorial. Field-plots of the components I, E, and
E, can be obtained. These field-components are complex-
valued. Fig. 8 shows their norm for the TEgg-mode for the
Deri waveguide configuration for the outer radius pg = 3000.0
pm, together with the field-intensity |E|. The outward shift of
the field-distribution due to the waveguide curvature is clearly
visible.

VI. CONCLUSION

The full-vectorial and mathematically rigorous source-type
integral equation analysis has been extended to circularly
curved channel waveguides with arbitrary cross-section em-
bedded in a multilayered background. Numerical results for
a broad range of curved channel waveguide configurations



BASTIAANSEN et al.: CIRCULARLY CURVED CHANNEL WAVEGUIDES IN A MULTILAYERED BACKGROUND

| E,|-component

| E,|-component | E,|-component

Fig. 8. Field-distribution of the TEgg-mode for the Deri waveguide at
pr = 3000.0 pm.

Tk, }

Im{k,} <0 Im{k,} <0
P [k P
R(f{k,,} <0 P ' 1 Sea Re{kp} >0
P ! 1 e
e ] [l o
e ) | ~
’ ¢ ! \\
4 N
’
’ B*‘ t A
’ .
4 .
’ ! i .
’ 1 t \
1 1 1 \)
) ' ( \
¥ ' I [}
1 ' [l A}
1) ' 1 L[]
[} , ,__k ______ 4 L k ' —— = = = - 4
: @ s @
F--=---- — e e =
Re{k,}
Im{k,} <0 Im{k,} <0
Re{k,} >0 k,-plane Re{k,} <0

Fig. 9. Deformation of the path of integration in the k.-plane.

have been presented. The results of the source-type integral
method have been compared with experimental results and
numerical results of other methods (especially the Effective
Index Method). Considerable disagreements were observed
for some configurations. For a more complete overview of
the source-type integral equation method and a multitude of
numerical results, the reader is referred to [12].

APPENDIX

For veC,Re{r} > 0, and k, = \/k2? — k2,Im{k,} < O,
the integral I is defined as

1= /_ Flha, k)T (pp ) HP (Epps)

- explik,|2’ — 2] dk,. (15)

Let f(ks,k,) be an analytic function of k. and an even
analytic function of k,. Then f(k.,k,(k.)) has the branch-
cut B, Im{k,} = 0, see Fig. 9. Furthermore, let f(k.,k,) =
O(k2),lkz| — oo, for < —1. Then, the large argument
expansion of the Bessel and Hankel function shows that
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integral path deformation from k,.cR into the contour around
the branch-cut BT is allowed. Change of integration variable
from k. to k, yields

>k

I=- k_pf(kmkp)Ju(ka<)Hz(/2)(kﬂp>)

-explikz|z’ — z|] dk,. (16)
As HP = 2J, — HY we find I = 21, — I, with
B== [ k) o () ()
-expE'kﬂa:’ - z] dk,, (17
I, =— /_Oo éf(kx,kp)J,,(kpp<)H,£1)(kpp>)
'expEkw|m' — z|] dk,. (18)

With change of integration variable k£, — -k, in (18)
and H,Sl)(_z) — .__e—merl(IQ)(z)’Jy(_Z) = e’™ J,(z) and
f(kma—kp) = f(kg:,kp) we ﬁnd

I=1I=1I. (19)
Similar relations hold for the derivatives of the Bessel and
Hankel functions.

Note: If a = —1, the non-uniform convergence of (15) for
p = p’ gives rise to additional terms when deformation of the
path of integration is applied.
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